Lecture 4

User-Defined Data Types

4.1 Enumerated Types

Enumerated data types allow you to define a set of identifiers that have integer values associated with them. The associated values can be implicit (that is, automatically assigned by the compiler) or explicit (that is, you assign the numeric constants to some or all of the enumerated values). Using enumerated values replaces a set of integers with a more meaningful set of identifiers called enumerators. C++ allows you to declare enumerated types using the following syntax:

enum enumeratedType { enumerator1, enumerator2, };

The declaration of an enumerated type starts with the keyword enum and is followed by the name of the enumerated type identifier and the list of enumerators. This comma-delimited list is enclosed in braces and ends with a semicolon. Here is an example of an enumerated type that represents colors:

enum fewColors { clBlack, clWhite, clRed, clBlue, clGreen, clYellow };

The keyword enum starts the declaration of an enumerated type. The code snippet declares the enumerated type fewColors and specifies the enumerators clBlack, clWhite, clRed, clBlue, clGreen, and clYellow. The compiler assigns the value 0 to clBlack, 1 to clWhite, 2 to clRed, and so on. You can explicitly assign values to the enumerators as shown in the next example:

enum moreColors { mclBlack = 10, mclWhite, mclRed = 20, mclBlue,

 mclGreen, mclYellow };

This code snippet declares the enumerated type moreColors and includes explicit value assignments to some of the enumerators. The compiler assigns the value 10 to mclBlack, 11 to mclWhite, 20 to mclRed, 21 to mclBlue, 22 to mclGreen, and 23 to mclYellow.
Here’s an example program, DAYENUM, that uses an enumeration for the

days of the week:

// dayenum.cpp

// demonstrates enum types

#include <iostream>

using namespace std;

//specify enum type

enum days_of_week { Sun, Mon, Tue, Wed, Thu, Fri, Sat };

int main()

{

days_of_week day1, day2; //define variables

//of type days_of_week

day1 = Mon; //give values to

day2 = Thu; //variables

int diff = day2 - day1; //can do integer arithmetic

cout << “Days between = “ << diff << endl;

if(day1 < day2) //can do comparisons

cout << “day1 comes before day2\n”;

return 0;

}
4.2 Structures

C++ supports the struct user-defined type, which defines structures. These structures are similar to records used in other programming languages. A structure contains data members that either have a predefined data type or are themselves previously defined structures.
4.2.1 Declaring Structures

The general syntax for declaring a structure type is:

struct structureName

{

 type1 dataMember1;

 type2 dataMember2;

 // other data members

};
Let's look at a few examples. Here is a simple structure that defines the x-y coordinates of a point:

struct Point {

 int x;

 int y;

};

The declaration defines the structure Point with the int-type data members x and y. Here is a structure that represents a complex number:

struct Complex {

 double x;

 double y;

};

The declaration defines the structure Complex with the double-type data members x and y. Here is a structure that represents personal data:

struct Person

{

 char m_cFirstName[10];

 char m_cMiddleInitial;

 char m_cLastName[15];

 int m_BirthYear;

 double m_fWeight;

};

This declaration defines the structure Personal and declares a rich set of data members, which describe a name, a weight, and a BirthYear. Many of the data members in structure Personal are arrays of characters, which store ASCIIZ string data. Here is another example, one which uses nested structures:

struct Rectangle {

 Point ulc; // upper-left corner;

 Point lrc; // lower-right corner;

 };

This declaration defines the structure Rectangle, which contains the data members ulc and lrc, themselves previously defined structures.

4.2.2 Declaring Structure Variables
Declaring structure variables is no different from declaring variables with predefined types. Here is the general syntax:

// declaring a single variable

structureType structureVariable;

// declaring an array of structures

structureType structureArray[numerOfElemens];

Here are examples of declaring structure variables, using the structures that I declared in the last subsection:

Point Origin, StartPoint, EndPoint, Points[10];

Rectangle myRectangle;

Person Me, You, Us[30];

These examples declare the Point-type variables Origin, StartPoint, and EndPoint. The examples also declare the Point-type array Points to have 10 elements. They additionally declare the Rectangle-type variable myRectangle, the Person-type variables Me and You, and the Person-type array Us.

4.2.3 Accessing Structure Members

Accessing a data member of a structure involves using the dot access operator for a structure variable. Here is an example:

Point pointX;

pointX.x = 10;

pointX.y = 200;
Rectangle rectangle;

rectangle.ulc.x=20;
rectangle.ulc.y=30;
In the case of a pointer to a structure, use the pointer access operator -> to access the data members. Here is an example:

Point pointX;

Point *ptrX = &pointX;

ptrX->x = 10;

ptrX->y = 200;
4.2.4 Initializing Structures

C++ allows you to initialize the data members of structures. This feature resembles initializing arrays and follows similar rules. The general syntax for initializing a structure variable is:

structureType structureVariable = { value1, value2, };

The compiler assigns value1 to the first data member of the variable structureVariable, value2 to the second data member of the variable structureVariable, and so on. You need to observe the following rules:

· The assigned values should be compatible with their corresponding data members.

· You can declare fewer initialing values than data members. The compiler assigns zeros to the remaining data members of the structure variable.

· You cannot declare more initializing values than data members.

· The initializing list sequentially assigns values to data members of nested structures.

· The initializing list assigns values sequentially to data members that are arrays.

Keep in mind that the task of initializing structures is as simple or complex as the initialized structures themselves.

Here are examples of initializing structures:

struct Point

{

 double m_fX;

 double m_fY;

};

struct Rectangle

{

 Point m_UpperLeftCorner;

 Point m_LowerRightCorner;

 double m_fLength;

 double m_fWidth;

};

Point FocalPoint = { 12.4, 34.5 };

Rectangle Shape = { 100.0, 50.0, 200.0, 25.0 };

// calculate the length

Shape.m_fLength = Shape.m_UpperLeftCorner.m_fX -

 Shape.m_LowerRightCorner.m_fX;

// calculate the width

Shape.m_fWidth = Shape.m_LowerRightCorner.m_fY -

 Shape.m_UpperLeftCorner.m_fY;

This example declares the structures Point and Rectangle. The example also declares the Point-type variable FocalPoint and initializes its data members m_fX and m_fY with the values 12.4 and 34.5. The example further declares the Rectangle-type Shape and initializes the first two data members m_UpperLeftCorner and m_LowerRightCorner. Each one of these data members requires two initializing values since they have the type Point. Thus, the compiler assigns the values 100.0, 50.0, 200.0, and 25.0 to Shape.m_UpperLeftCorner.m_fX, Shape.m_UpperLeftCorner.m_fY, Shape.m_LowerRightCorner.m_fX, and Shape.m_LowerRightCorner.m_fY, respectively.
4.3 Exercises
1. Write a structure specification that includes three variables—all of type int—called hrs,mins, and secs. Call this structure time.

2. When accessing a structure member, the identifier to the left of the dot operator is the

name of

a. a structure member.

b. a structure tag.

c. a structure variable.

d. the keyword struct.

3. Write a definition that initializes the members of time1—which is a variable of type

struct time, as defined in Question 4—to hrs = 11, mins = 10, secs = 59.

4. An enumeration brings together a group of

a. items of different data types.

b. related data variables.

c. integers with user-defined names.

d. constant values.

5. Write a statement that declares an enumeration called players with the values B1, B2,

SS, B3, RF, CF, LF, P, and C.

6. A phone number, such as (212) 767-8900, can be thought of as having three parts: the area code (212), the exchange (767), and the number (8900). Write a program that uses a structure to store these three parts of a phone number separately. Call the structure phone. Create two structure variables of type phone. Initialize one, and have the user input a number for the other one. Then display both numbers. The interchange might look like this:

Enter your area code, exchange, and number: 415 555 1212

My number is (212) 767-8900

Your number is (415) 555-1212

7. A point on the two-dimensional plane can be represented by two numbers: an x coordinate and a y coordinate. For example, (4,5) represents a point 4 units to the right of the vertical axis, and 5 units up from the horizontal axis. The sum of two points can be defined as a new point whose x coordinate is the sum of the x coordinates of the two points, and whose y coordinate is the sum of the y coordinates. Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this:

Enter coordinates for p1: 3 4

Enter coordinates for p2: 5 7

Coordinates of p1+p2 are: 8, 11

8. Create a structure called employee that contains two members: an employee number (type int) and the employee’s compensation (in dollars; type float). Ask the user to fill in this data for three employees, store it in three variables of type struct employee, and then display the information for each employee.

PAGE
9

