Lecture 6
Functions (2)
6.5 Exercises
1. Show the value of x after each of the following statements is performed:

 a) x = fabs(7.5)

 b) x = floor(7.5)

 c) x = fabs(0.0)

 d) x = ceil(0.0)

 e) x = fabs(-6.4)

 f) x = ceil(-6.4)

 g) x = ceil(-fabs(-8 + floor(-5.5)))

2. Write a function multiple that determines for a pair of integers whether the second integer is a multiple of the first. The function should take two integer arguments and return true if the second is a multiple of the first, false otherwise. Use this function in a program that inputs a series of pairs of integers.
3. Write a program that inputs a series of integers and passes them one at a time to function even, which uses the modulus operator to determine whether an integer is even. The function should take an integer argument and return true if the integer is even and false otherwise.
4. Write a function that displays at the left margin of the screen a solid square of asterisks whose side is specified in integer parameter side. For example, if side is 4, the function displays

5. Write program segments that accomplish each of the following:

 a) Calculate the integer part of the quotient when integer a is divided by integer b.

 b) Calculate the integer remainder when integer a is divided by integer b.

 c) Use the program pieces developed in a) and b) to write a function that inputs an integer between 1 and 32767 and prints it as a series of digits, each pair of which is separated by two spaces. For example, the integer 4562 should be printed as

4 5 6 2

While (n>0)
{

Cout<<n/1000

N=n%1000

}
6. Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power() that takes a double value for n and an int value for p, and returns the result as a double value. Use a default argument of 2 for p, so that if this argument is omitted, the number n will be squared. Write a main() function that gets values from the user to test this function.

7. Write a function called zeroSmaller() that is passed two int arguments by reference and then sets the smaller of the two numbers to 0. Write a main() program to exercise this function.

8. Write a function that takes two Distance values as arguments and returns the larger one. Include a main() program that accepts two Distance values from the user, compares them, and displays the larger.
9. Write a function called swap() that interchanges two int values passed to it by the calling program. (Note that this function swaps the values of the variables in the calling program, not those in the function.) You’ll need to decide how to pass the arguments. Create a main() program to exercise the function.

10. Write a function that, when you call it, displays a message telling how many times it has been called: “I have been called 3 times”, for instance. Write a main() program that calls this function at least 10 times. Try implementing this function in two different ways. First, use a global variable to store the count. Second, use a local static variable. Which is more appropriate? Why can’t you use a local variable?

11. Write a function that returns the smallest of three double-precision, floating-point numbers.
12. An integer number is said to be a perfect number if the sum of its factors, including 1 (but not the number itself), is equal to the number. For example, 6 is a perfect number, because 6 = 1 + 2 + 3. Write a function perfect that determines whether parameter number is a perfect number. Use this function in a program that determines and prints all the perfect numbers between 1 and 1000. Print the factors of each perfect number to confirm that the number is indeed perfect. Challenge the power of your computer by testing numbers much larger than 1000.

bool perfTest (int Num)

{

bool perfect;

int B=0;

for(int A=1; A!=Num; A++)

{

 if(Num%A==0)

 {

 B+=A;

 }

}

if(B==Num)perfect=true;

else

perfect=false;

return perfect;

}

13. An integer is said to be prime if it is divisible by only 1 and itself. For example, 2, 3, 5 and 7 are prime, but 4, 6, 8 and 9 are not.

 a) Write a function that determines whether a number is prime.

For(i=2 to n)
{

If (n%i==0)

Sum+=n%i

}

 b) Use this function in a program that determines and prints all the prime numbers between 1 and 1000.

14. Write a function that takes an integer value and returns the number with its digits reversed. For example, given the number 7631, the function should return 1367.
main()
{
 int a,n,s=0,t;
 printf("Enter the number=");
 scanf("%d", &a);
 for(n=a;n!=0;n=n/10)
 {
 t=n%10;
 s=(s*10+t);
 }
 printf("The Reverse No. is %d", s);
 getch();
}
15. Write a recursive function power(base, exponent) that, when invoked, returns
	
	base exponent

	
	base exponent = base · base exponent -1

	
	base1 = base

Power(b,e)

{

If e=0 return b;

Else return b*power(b,e-1);

}

16. The greatest common divisor of integers x and y is the largest integer that evenly divides both x and y. Write a recursive function gcd that returns the greatest common divisor of x and y. The gcd of x and y is defined recursively as follows: If y is equal to 0, then gcd(x, y) is x; otherwise gcd(x, y) is gcd(y, x % y), where % is the modulus operator.
gcd(x,y)

{

If y=0 return x;

Else return gcd(y,x%y);

}

PAGE
5

